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1 Introduction

1.1 What is a Reciprocity Law?

The Legendre symbol for quadratic residues is defined as

Definition 1.1. (
a

p

)
=


1, if a is a nonzero quadratic residue modulo p,

0, if p | a,

−1, otherwise.

where a is an integer and p and odd prime.

It can be extended to the Jacobi Symbol, where the denominator is any odd positive integer by defining

Definition 1.2.

(
a

p1p2 · · · pr

)
=

r∏
i=1

(
a

pi

)
where the pi are odd primes.

Theorem 1.3 (Law of Quadratic Reciprocity).(
m

n

)
= (−1)

m−1
2

n−1
2

(
n

m

)
where m,n are coprime odd positive integers.

When p, q are distinct odd primes, the residue class of p modulo q determines whether p is a square

modulo q. What the Law of Quadratic Reciprocity implies is that this can also be determined by the residue

class of q modulo 4p (or q modulo p when p ≡ 1 (mod 4)).

We will now deal with attempts to generalize this result: instead of looking at quadratic residues, you

can consider higher powers. Generalizing results and methods from Q to larger number fields will not only

be interesting, but necessary to deal with higher cases.

1.2 A Brief Summary

This essay begins by defining the power residue symbol in general, and exploring its basic properties. Sections

3-5 deal mostly with Eisenstein Reciprocity, and specific cases of it (or slight variations in the case of quartic

reciprocity). To motivate the introduction of Gauss and Jacobi sums, we give a proof of quadratic reciprocity

involving them. After investigating their properties, we present a full exposition on cubic reciprocity, which

will help motivate the section on Eisenstein reciprocity. Before that, we present only the results from quartic

reciprocity: they are not a consequence of Eisenstein reciprocity, but the methods involved are very similar

to the cubic case, so it would not add much to present proofs. We then move on to Eisenstein reciprocity:

this is a reciprocity law in Q(ζn) where n is an odd prime. Its statement is simple and elegant, and it is one

of the most general reciprocity laws that you can obtain without class field theory. The bulk of its proof is

factorizing the Gauss sum in general; the rest of the proof is applying a few tricks to deduce the law.

With the development of class field theory came the statement and proof of Artin’s Reciprocity Law. As

mentioned by Peter Swinnerton-Dyer on page 100 in [4], as well as by Franz Lemmermeyer on page ix in

[3], this law could be used to deduce all previously known reciprocity laws. However, this deduction is not

obvious from a first glance! In section 6, we will start off by defining the Artin symbol, and linking it to the

power residue symbol. We will then state several results of global class field theory, leading to Artin’s Law.

Deduction of reciprocity laws from Artin is not immediate; instead we will first introduce the Hilbert symbol

and a few key results. The essay ends with the examples of deducing quadratic reciprocity, as well as cubic

reciprocity. While most proofs are given, in the last 2 sections we will not provide proofs of a few key results
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which require more involved class field theory. These results are either common and included in any good

book on class field theory, or we will give a reference to where to find a proof.

Most of the theorems/propositions/lemmas and the method of their proofs for sections 3-5 came from [3],

Franz Lemmermeyer’s fantastic book about reciprocity laws. It is a great place to look for those who want to

find out more; the full list of references at the end totals 885, so it is also an excellent place to find references

to other books and articles dealing with similar topics. The material after section 6.1 mostly derives from

chapter 5 of [4], Peter Swinnerton-Dyer’s short book on Algebraic Number Theory.

1.3 Notation

One caveat of working in extensions of Q is that primes in Z+ may no longer be prime. When we refer to

a prime, it will typically be obvious from context whether we mean a prime ideal, a prime in the number

field, or a prime in Z+. However for added measure, when we are not working over Z or Q, we will refer to

primes in Z+ as “integer primes”. They will typically be labeled with regular letters, like p, q. Prime ideals

will normally be assigned curly letters or Greek characters, like p, q,Λ. An automorphism σ acting on an

element α is written both as σ(α) and ασ.

2 Generalized Power Residue Symbol

2.1 Generalized Power Residue Symbol

In defining the generalized power residue symbol, it is good to keep in mind the Legendre symbol, as we want

this to be a special case of the new symbol. The Legendre symbol is multiplicative on top, so to retain this

feature, it will be necessary for the symbol to take more values than ±1 (there is some theory where power

residue symbols only take ±1: rational reciprocity. The theory is fairly limited and will not be covered in this

essay).

Let n > 1 be a positive integer, and k be a number field which contains a primitive nth root of unity

ζn. Suppose p is a prime ideal of Ok coprime to n (i.e. p - nOk) lying above the integer prime p. Then

Np =

∣∣∣∣Okp
∣∣∣∣ = pf = q some positive integer f , and p is coprime to n if and only if p - n. For all x ∈ Ok

coprime to p, we have:

xq−1 ≡ 1 (mod p). (2.1)

I claim that the reduction of ζn modulo p still has order n in
Ok
p

, hence n | q − 1. Indeed, the nth roots of

unity in Fpf satisfy xn − 1 = 0, and this is separable since p - n. So we do get n distinct nth roots of unity,

which form the group generated by ζn (the reduction of ζn), which is what we desire. This allows us to now

define the power residue symbol:

Definition 2.1. For α ∈ Ok coprime to p, define (αp )n to be the unique nth root of unity in Ok such that:

α
q−1
n ≡

(
α

p

)
n

(mod p). (2.2)

Extend this definition multiplicatively in the denominator to all ideals coprime to α and n.
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2.2 Properties of the Power Residue Symbol

Proposition 2.2. The power residue symbol for n = 2 and k = Q agrees with the definition of the Legendre

(and hence Jacobi) symbol where defined.

Proof. It suffices to show

x
p−1
2 ≡

(
x

p

)
(mod p), (2.3)

for integers x coprime to p. If x ≡ y2 (mod p) then x
p−1
2 ≡ yp−1 ≡ 1 ≡

(
x

p

)
(mod p), and if x is not a

quadratic residue, let r be a generator for the multiplicative group modulo p (this is cyclic). Then x ≡ re

(mod p) with e odd, so x
p−1
2 ≡ r

(p−1)e
2 ≡ −1 ≡

(
x

p

)
(mod p) since r

(p−1)e
2 squares to give 1, but cannot be

1 as p− 1 - (p−1)e
2 since e is odd.

Proposition 2.3. Let n > 1 be a positive integer, and let p be an integer prime such that p − 1 is coprime

to n. Then all integers x coprime to p are nth powers modulo p

Proof. Let r be a primitive root modulo p, and let x ≡ re (mod p). Then, as p − 1, n are coprime, choose

integers a, b such that a(p − 1) + bn = e. Then we let y ≡ rb (mod p), and yn ≡ rnb ≡ rnb+a(p−1) ≡ re ≡ x

(mod p) as required.

Proposition 2.3 tells us that the only interesting cases are when p ≡ 1 (mod n): we only care about the

equivalence class of n modulo p− 1, and can factor out coprime factors to reduce to the above.

It is worth checking how our definition captures elements being nth powers modulo prime ideals, and how we

can find the nth power residue classes modulo p when p ≡ 1 (mod n). This second question is not obvious,

as we are forced to use nth roots of unity, which do not occur in Q (for n > 2), and so the prime ideals in the

number field are not necessarily generated by the integer primes. We will answer this question after a useful

lemma and proposition.

Lemma 2.4. Let L/K be a Galois extension of number fields such that ζn ∈ L. Then for all σ ∈ Gal(L/K)

we have (
α

a

)σ
n

=

(
ασ

aσ

)
n

for all α ∈ OL/{0} and ideals a coprime to nα.

Proof. By definition, if p is a prime ideal with norm q, we have

α
q−1
n ≡

(
α

p

)
n

(mod p) and (ασ)
q−1
n ≡

(
ασ

pσ

)
n

(mod pσ).

Apply σ to the first equation and equating them gives the result when p is prime. The multiplicativity of the

power residue symbol implies the result in general.

Note that complex conjugation is an automorphism of any number field over Q, so the above lemma

applies to it (we will need this fact later on).

Proposition 2.5. Let n ≥ 3, let p be an integer prime such that p - n, let f denote the order of p modulo n,

and let K = Q(ζn). Then pOK is a product of
φ(n)

f
distinct prime ideals, each with inertia degree f .
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Proof. Let p be any prime ideal lying above p. The residue field
Ok
p

is just Fp(ζn). Now, n | pf − 1 hence

ζn ∈ Fpf . If 0 < r < f , then n - pr − 1 whence ζn 6∈ Fpr (the multiplication group of finite fields is cyclic).

Therefore
Ok
p

= Fpf , i.e. the inertia degree of p is f . Since p - n, p does not ramify, and as p was arbitrary

and [K : Q] = φ(n), the proposition follows.

Proposition 2.6. Let k be a number field containing a primitive nth root of unity ζn, and let p be a prime

ideal of Ok, coprime to x ∈ Ok. Then:

i)

(
x

p

)
n

= 1 iff x is an nth power modulo p.

ii) x ∈ Z is an nth power in Z
pZ , where p ≡ 1 (mod n) is an integer prime, if and only if

(
x

p

)
n

= 1, where

p is any prime ideal lying above p in Q(ζn).

Proof. i) If x is an nth power modulo p, then x ≡ αn (mod p). Then

(
x

p

)
n

≡ x
q−1
n ≡ αq−1 ≡ 1 (mod p)

so this direction is proved. If

(
x

p

)
n

≡ 1 (mod p), then as

(
Ok
p

)×
is cyclic (multiplication group of a finite

field), let it be generated by r. So x ≡ rs (mod p). Then 1 ≡
(
x

p

)
n

≡ x
q−1
n ≡ r

s(q−1)
n (mod p) implies that

q − 1 | s(q − 1)

n
, i.e. n | s, so x is indeed an nth power modulo p.

ii) By Proposition 2.5, the residue field of p is just Fp. Therefore

(
x

p

)
n

= 1 if and only if x is an nth

power in
Ok
p

= Fp, which is the result we desire.

3 Gauss and Jacobi Sums

3.1 A Quadratic Example

When considering quadratic reciprocity, a natural sum to consider is τ =
p−1∑
n=1

(
n

p

)
ζnp ∈ Z[ζp] where ζp =

exp(
2πi

p
) and p is an odd integer prime.

Lemma 3.1. If p is an odd prime, then S =
p−1∑
n=1

(
n

p

)
= 0

Proof. Let x be any quadratic non-residue modulo p (which exists as p > 2). Then:

−S =

(
x

p

) p−1∑
n=1

(
n

p

)
=

p−1∑
n=1

(
nx

p

)
=

p−1∑
y=1

(
y

p

)
= S,

since y = nx runs through 1, 2, . . . , p− 1 when n does. Hence S = 0.

Proposition 3.2. Let τ be defined as above. then:

i) τ2 = (−1)
p−1
2 p = p∗.

ii) τ q−1 ≡
(
q

p

)
(mod q) for any odd prime q 6= p.
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Proof. i) We calculate

τ2 =

p−1∑
m=1

(
m

p

)
ζmp

p−1∑
n=1

(
n

p

)
ζnp =

∑
m,n

(
mn

p

)
ζm+n
p .

Using x = n/m, and
p∑
i=1

ζip = 0 we thus get:

τ2 =
∑
m,x

(
m2x

p

)
ζm(1+x)
p =

p−1∑
x=1

(
x

p

) p−1∑
m=1

(ζ1+xp )m.

For x 6= p− 1, ζ1+xp is a primitive pth root of unity, so this sum is
p−1∑
i=1

ζip = 0− ζpp = −1. For x = p− 1, this

sum evaluates to p− 1. Therefore we see that:

τ2 = −
p−2∑
x=1

(
x

p

)
+

(
−1

p

)
(p− 1) = p

(
−1

p

)
= p∗,

where we used the previous lemma for the second last equality.

ii) Note τ =
p−1∑
n=1

(
n

p

)
ζnp =

p−1∑
n=1

(
nq2

p

)
ζnp . Therefore we calculate:

τ q =

( p−1∑
n=1

(
nq2

p

)
ζnp

)q
≡

p−1∑
n=1

(
nq2

p

)
ζqnp ≡

(
q

p

)
τ (mod q).,

since nq runs through 1, 2, . . . , p− 1 modulo p as n does.

The law of quadratic reciprocity for primes now follows almost immediately (this is easily generalized to

the corresponding law for all odd positive integers).

Corollary 3.3 (Law of Quadratic Reciprocity).(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
where p, q are distinct odd positive primes.

Proof. We have (
p∗

q

)
≡ (p∗)

q−1
2 = τ q−1 ≡

(
q

p

)
(mod q), (3.1)

and hence equality as −1 6≡ 1 (mod q). The law now follows from Equation 3.1 and

(
−1

q

)
= −1 for q ≡ 3

(mod 4) (which can be proved by using ( Z
qZ )× is cyclic).

3.2 Gauss and Jacobi Sums

The general version of a Gauss sum is as follows: we have a number field K, and a prime ideal p. The

quotient field is
Ok
p
' Fq which is a finite extension of Fp, and q = pf . Let χ be a multiplicative character

χ : F×q → C×, and let ψ be an additive character ψ : Fq → C×.

Definition 3.4. The Gauss sum associated with χ,ψ, and α ∈ F×q is

Gα(χ, ψ) = −
∑
t∈F×q

χ(t)ψ(αt). (3.2)
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Remark. Let Tr : Fq → Fp be the trace map. We will always be taking ψ(t) = ζ
Tr(t)
p , so we will drop the

ψ in the input. We will also typically take χ to be the nth power residue symbol, or a power of it.

Remark. Let 1 be the trivial character, i.e. 1(t) = 1 for all t ∈ Fq. It is convenient to set 1(0) = 1 and

χ(0) = 0 for all multiplicative characters χ 6= 1. However now, χχ−1 6= 1 if multiplication is defined pointwise.

Therefore we alter it slightly to the following:

(χθ)(t) :=


χ(t)θ(t) if t 6= 0,

0 if t = 0 and χ 6= θ−1,

1 if t = 1 and χ = θ−1.

(3.3)

We now present some simple results about Gauss sums which will be of use in proving reciprocity laws.

First off, we drop the need for the α in the input.

Proposition 3.5. Define G(χ) = G1(χ). Then Gα(χ) = χ(α)−1G(χ).

Proof. This is a simple calculation:

Gα(χ) = −
∑
t∈F×q

χ(t)ψ(αt) = −χ(α)−1
∑
t∈F×q

χ(αt)ψ(αt) = χ(α)−1G(χ).

The introduction of the Jacobi sum comes naturally when attempting to multiply two Gauss sums. First,

note that G(1) = 1, which can be derived similarly to the proof of lemma 3.1. So we let χ1, χ2 6= 1 be

nontrivial characters on F×q :

G(χ1)G(χ2) =
∑
x,y∈Fq

χ1(x)χ2(y)ψ(x+ y) =
∑
x,z∈Fq

χ1(x)χ2(z − x)ψ(z).

Note that we have extended the sum to all of Fq with reference to the previous remark, and have introduced

z = x+ y. We next split the sum into cases of z = 0 and z 6= 0:

G(χ1)G(χ2) =
∑

x∈Fq,z∈F×q

χ1(x)χ2(z − x)ψ(z) +
∑
x∈Fq

χ1(x)χ2(−x).

As χ1 6= 1, χ1(0) = 0, and so the second sum is χ1(−1)
∑
x∈F×q

χ1χ2(−x). So if χ1χ2 6= 1, then just as in lemma

3.1 we get the sum being 0. Otherwise, the sum is χ1(−1)(q − 1).

For the first sum, we make the change of variable of removing x and introducing r = x/z (as z 6= 0), and

we calculate: ∑
x,z 6=0∈Fq

χ1(x)χ2(z − x)ψ(z) =
∑

r∈Fq,z∈F×q

χ1(z)χ2(z)ψ(z)χ1(r)χ2(1− r)

=

( ∑
z∈F×q

χ1χ2(z)ψ(z)

)(∑
r∈Fq

χ1(r)χ2(1− r)
)

= G(χ1χ2)

(
−
∑
r∈Fq

χ1(r)χ2(1− r)
)
.

Definition 3.6. For nontrivial multiplicative characters χ1, χ2 6= 1 on F×q , the Jacobi sum of χ1 and χ2 is

J(χ1, χ2) = −
∑
r∈Fq

χ1(r)χ2(1− r).
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The above calculations give us:

G(χ1)G(χ2) = G(χ1χ2)J(χ1, χ2), (3.4)

as long as none of χ1, χ2, χ1χ2 are 1.

When χ = χ1 = χ−12 , we get G(χ, χ−1) = χ(−1)(q− 1) +G(1)J(χ, χ−1). So we calculate the Jacobi sum:

J(χ, χ−1) = −
∑
r∈Fq

χ(r)χ−1(1− r) = −
∑

r∈Fq\{1}

χ(
r

1− r
).

Now, F\{1} → F\{−1} : r → r

1− r
= −1 +

1

1− r
is a bijection, hence this sum is just −

∑
t∈Fq\{−1}

χ(t) =

χ(−1). Therefore G(χ)G(χ−1) = χ(−1)q. We collect the above results (and a couple of new ones) into a

proposition.

Proposition 3.7. For all α ∈ F×q and nontrivial characters χ, χ1, χ2 6= 1 such that χ1χ2 6= 1, where χ has

order n, we have:

i)Gα(χ) ∈ Z[ζp, ζn]; iv)G(χ1)G(χ2) = G(χ1χ2)J(χ1, χ2);

ii)Gα(χ) = χ(α)−1G(χ); v)χ(−1)G(χ−1) = G(χ);

iii)G(χ)G(χ−1) = χ(−1)q; vi)G(χ)G(χ) = q.

Proof. i) is clear, we have already proved ii)− iv), and vi) follows from v) and iii) (noting χ(−1)2 = 1). For

v), we calculate:

G(χ) = −
∑
t∈F×q

χ(t)−1ψ(t)−1 = −χ(−1)−1
∑
t∈F×q

χ(−t)−1ψ(−t) = χ(−1)G(χ−1),

where we have used that the complex conjugate of a root of unity is its inverse.

Recall that in the previous section we showed τ2 = ±p; here τ = −G(χ) when χ is the quadratic residue

symbol in Z. The result that generalizes this is the following corollary.

Corollary 3.8. Let χ be a character of order n on Fq. Then:

G(χ)r = G(χr)J(χ, χ)J(χ, χ2) · · · J(χ, χr−1)

for all 1 ≤ r ≤ n− 1. Furthermore,

G(χ)n = χ(−1)qJ(χ, χ)J(χ, χ2) · · · J(χ, χn−2) ∈ Z[ζn]. (3.5)

Proof. The first part is derived by repeatedly applying property iv) of proposition 3.7. For the second equation,

take r = n−1, multiply each side by G(χ), and simplify using χn−1 = χ−1 (χ has order n) and G(χ)G(χ−1) =

χ(−1)q.

We have derived some interesting results so far, however it is not immediately clear how they relate to

reciprocity. We will require the prime ideal factorizations of Gauss and Jacobi sums, as well as a result

analogous to Proposition 3.2ii).

Proposition 3.9. Let p ≡ 1 (mod n) be an integer prime, let p be any prime ideal lying above p in K =

Q(ζn), and let χ =
( ·
p

)
n

be the power residue symbol. If r ≡ 1 (mod n) is any integer prime not equal to p,

then

G(χ)r−1 ≡ χ(r)−1 (mod r). (3.6)

9



Proof. By proposition 2.5, p splits into a product of φ(n) primes, all with inertia degree 1 (note that similarly

if p has inertia degree 1, then the integer prime it lies above is also 1 (mod n)). The inertia degree being 1

implies that G(χ) = −
∑p−1
t=1 χ(t)ζtp. Now we calculate (noting that r is odd as n | r − 1, and r is prime):

G(χ)r ≡ −
p−1∑
t=1

χ(t)rζrtp = −
p−1∑
t=1

χ(t)ζrtp = χ(r)−1G(χ) (mod r).

Multiply each side by G(χ), use G(χ)G(χ) = p, and divide out by p (which is coprime to r) and we get the

result.

To obtain the factorizations of the sums for small powers, the following lemma and proposition will suffice.

Lemma 3.10. Let p be an integer prime. Then:

p−1∑
a=1

ak ≡

{
0 (mod p), if 0 < k < p− 1;

−1 (mod p), if k = p− 1.

Proof. For k = p − 1 this is trivial by Fermat’s Little Theorem, and otherwise the proof follows exactly as

the proof of lemma 3.1.

Proposition 3.11. Adopting the notation of Proposition 3.9, we have J(χa, χb) ≡ 0 (mod p) for all integers

a, b ≥ 1 such that a+ b ≤ n− 1.

Proof. As p has degree 1, we can write the Jacobi sum as J(χa, χb) = −
p−1∑
t=0

χa(t)χb(1− t). Since by definition

we have χ(t) ≡ t
p−1
n (mod p) for all t, and χ(0) = 0, we can write this sum as:

J(χa, χb) ≡ −
p−1∑
t=1

t
a(p−1)
n (1− t)

b(p−1)
n (mod p).

Upon expansion, the exponent of the t’s are at most
a(p− 1)

n
+
b(p− 1)

n
= (p−1)

a+ b

n
< p−1 as a+b ≤ n−1.

So by the previous lemma, the sum over t of these is 0 modulo p, and hence the entire sum is 0 modulo p.

4 Cubic and Quartic Reciprocity

4.1 Cubic Reciprocity

The cubic case is fairly simple, as we can find the prime ideal factorization of G(χ) fairly easily. Throughout

this section, we will let ω = ζ3 =
−1 +

√
−3

2
. Recall that K = Q(ω) has class number 1, so Z[ω] is a PID

and a UFD (and thus the primes coincide with the prime ideals). Since K is an imaginary quadratic field,

the norm on K is just the typical modulus on C, i.e. | · |. We begin with some quick propositions dealing with

the units in Z[ω], and their ramifications (the non-mathematical sense of the word).

Proposition 4.1. The units of Z[ω] are ±ωr for r = 1, 2, 3.

Proof. Recall a + bω (a, b ∈ Z) is a unit if and only if ±1 = |a + bω| (as this is the norm over Q). Well, we

calculate:

|a+ bω| =
∣∣∣∣2a− b+ b

√
−3

2

∣∣∣∣ =
1

4

√
(2a− b)2 + 3b2 =

√
a2 − ab+ b2.

Therefore this amounts to solving a2 − ab+ b2 = 1. If ab > 0, then (a− b)2 < a2 − ab+ b2 hence a− b = 0,

and then a = b = ±1. If ab < 0, then (a+ b)2 < a2 − ab+ b2 so now a = −b and we get no solutions. Finally,

ab = 0 gives us (a, b) = (±1, 0), (0,±1), so all together there are precisely 6 distinct units. Since ±ωr for

r = 1, 2, 3 are 6 distinct units, this is the entire set.
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Definition 4.2. In the ring of integers of a number field, nonzero numbers x and y are called associates if

their ratio is a unit.

Proposition 4.3. If x ∈ Z[ω] is coprime to 3, then exactly one associate of x is equivalent to 1 modulo 3.

Proof. Since 3 = (
√
−3)2 = (1 + 2ω)2, we see that

OK
3
' Z

9Z
. Since precisely one unit is equivalent to 1

(mod 3), they are all distinct modulo 3, and hence form the 6 residue classes modulo 3 which are coprime to

3. So if x is coprime to 3, it falls into exactly one of these classes, and thus the result follows.

It is worth explicitly pointing out that modulo 3 has a slightly different meaning than normal here: typi-

cally the residue classes are 0, 1, 2. However, when working in Q(ω), the residue classes are now a+ bω where

a, b ∈ {0, 1, 2}. As 3 is no longer a prime, this is no longer an integral domain either.

Proposition 4.4. Let p ≡ 1 (mod 3) be an integer prime, and χ a character of order 3 on Fp. Since

J(χ, χ) ∈ Z[ω], let J(χ, χ) = a+ bω with a, b ∈ Z. Then we have p = a2 − ab+ b2, a ≡ 1 (mod 3), and b ≡ 0

(mod 3).

Proof. Proposition 3.7 showed that G(χ)G(χ) = p, and Corollary 3.8 gives us G(χ)3 = pJ(χ, χ) (since χ

has order 3, χ(−1) = χ(−1)3 = 1). Thus |G(χ)| =
√
p, and so |J(χ, χ)| =

1

p
|G(χ)3| =

√
p. But we have

J(χ, χ)| = |a+ bω| =
√
a2 − ab+ b2, whence we get p = a2 − ab+ b2.

To finish, we need to show that J(χ, χ) ≡ 1 (mod 3). Well, we calculate:

G(χ)3 ≡ −
p−1∑
t=0

χ3(t)ζ3tp = −
p−1∑
t=1

ζtp = 1 (mod 3).

We now get: J(χ, χ) ≡ pJ(χ, χ) = G(χ)3 ≡ 1 (mod 3), finishing the proposition.

Corollary 4.5. Let π be a prime in Z[ω] such that π ≡ 1 (mod 3), and π lies above an integral prime p ≡ 1

(mod 3). Letting χ =
( ·
π

)
3
, then:

J(χ, χ) = π, G(χ)3 = π2π. (4.1)

Proof. Proposition 3.11 tells us that π | J(χ, χ). But |J(χ, χ)| = √p = π from the preceding proposition, so

π and J(χ, χ) differ by a unit. As J(χ, χ) ≡ 1 ≡ π (mod 3), we get J(χ, χ) = π. The second part follows

from p = |π|2 = ππ.

Definition 4.6. A number in Z[ω] is called primary if it is equivalent to a nonzero integer modulo (1−ω)2.

This is equivalent to it being ±1 (mod 3).

Remark. We have to be a bit careful: as we are in a PID, we can and will refer to ideals by any generator.

So when
(
α
β

)
3

is written, β is in fact the ideal generated by β and not the elements β. Hence this value does

not change when multiplying β by a unit. However, multiplying the α by a unit can in fact change the value

of the symbol! Thus, for reciprocity laws, we will often need assumed conditions about the inputs, and this

does not lose us any generality.

Proposition 4.7. Let α ∈ Z[ω] be primary, and a ∈ Z be such that α, a are relatively prime. Then:(
α

a

)
3

=

(
a

α

)
3

.

Furthermore,
(
a
b

)
3

= 1 for all relatively prime a, b ∈ Z with 3 - b.
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Proof. Since the cubic reciprocity symbol is multiplicative, it will suffice to prove

(
α

a

)
3

=

(
a

α

)
3

when

α ∈ Z[ω] is prime and a ∈ Z+ is an integer prime (also noting that
(−1
x

)
3

= 1 for all x). We split into three

cases:

Case 1: p = αα ≡ 1 (mod 3) is an integer prime, and a = q = λλ ≡ 1 (mod 3).

Let χ =

(
·
α

)
3

, Proposition 3.9 tells us that G(χ)q−1 ≡ χ(q)−1 ≡ χ(q)2 (mod q). Using the Gauss sum

factorization, we get: (
q

α

)2

3

≡ G(χ)q−1 = (α2α)
q−1
3 ≡

(
α2α

λ

)
3

(mod λ),

hence (
q

α

)2

3

=

(
α2α

λ

)
3

. (4.2)

Observe that (
α

λ

)
3

=

(
α

λ

)
3

=

(
α

λ

)−1
3

=

(
α

λ

)2

3

.

Simplifying the right hand side of 4.2 gives us:(
α2α

λ

)
3

=

(
α

λλ

)2

3

=

(
α

q

)2

3

.

Squaring yields the equation

(
q

α

)
3

=

(
α

q

)
3

, as desired.

Case 2: p = αα ≡ 1 (mod 3) is an integer prime, and a = q ≡ 2 (mod 3).

In this case, we modify 3.9:

G(χ)q ≡ −
p−1∑
t=1

χ(t)qζqtp = −
p−1∑
t=1

χ(t)2ζqtp = χ(q2)2G(χ2) = χ(q)G(χ−1) (mod q).

Thus we have

G(χ)q+1 ≡ χ(q)G(χ−1)G(χ) = χ(q)p (mod q).

Therefore

ααχ(q) ≡ G(χ)q+1 = (α2α)
q+1
3 (mod q). (4.3)

Writing α = x+ yω, we get

αq ≡ xq + yqωq ≡ x+ yω−1 = α (mod q).

Using this in Equation 4.3 gives us

αq+1

(
q

α

)
3

≡ (αq+2)
q+1
3 (mod q).

Finally, this yields (
q

α

)
3

≡ α
q2−1

3 ≡
(
α

q

)
3

(mod q).

We can drop the modulo q, yielding the desired equality.

Case 3: α = p ≡ 2 (mod 3) and a = q ≡ 2 (mod 3) are integer primes.
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First, note that this is the last case, since α = p ≡ 2 (mod 3) and a = q ≡ 1 (mod 3) is a consequence of

case 2 (switch a, α, repeat with α instead of α, and multiply). Case 3 is in fact trivial; Proposition 2.3 tells

us that

(
q

p

)
3

= 1 =

(
p

q

)
3

For the last part of the proposition, it suffices to show the result when b is an integer prime. If b ≡ 2

(mod 3), then we are done by Proposition 2.3. Otherwise, b = λλ ≡ 1 (mod 3), and:(
a

b

)
3

=

(
a

λλ

)
3

=

(
a

λ

)
3

(
a

λ

)
3

=

(
a

λ

)
3

(
a

λ

)
3

=

(
a

λ

)
3

(
a

λ

)2

3

= 1,

as claimed.

Proposition 4.8. Let p, q be integers with p ≡ 1 (mod 3) and q ≡ 2 (mod 3). Then the following supple-

mentary laws hold: (
ω

p

)
3

= ω
1−p
3 ;

(
ω

q

)
3

= ω
1+q
3 ;(

1− ω
p

)
3

= ω
p−1
3 ;

(
1− ω
q

)
3

= ω
−1−q

3 .

Proof. First, assume p, q are integer primes. If p = αα ≡ 1 (mod 3), then(
ω

p

)
3

=

(
ω

α

)
3

(
ω

α

)
3

=

(
ω

α

)
3

(
ω2

α

)2

3

=

(
ω

α

)2

3

= ω
2(p−1)

3 = ω
1−p
3 .

Next, (
ω

q

)
3

= ω
q2−1

3 = (ω
q+1
3 )q−1 = ω

q+1
3 .

The extension to all composite integers comes from the following sequence of calculations:

If x = 3m+ 1, y = 3n+ 1 then

1− xy
3

≡ −m− n ≡ 1− x
3

+
1− y

3
(mod 3).

If x = 3m+ 1, y = 3n+ 2 then

1 + xy

3
≡ n+ 2m+ 1 ≡ −m+ n+ 1 ≡ 1− x

3
+

1 + y

3
(mod 3).

If x = 3m+ 2, y = 3n+ 2 then

1− xy
3

≡ −2m− 2n− 1 ≡ m+ 1 + n+ 1 ≡ 1 + x

3
+

1 + y

3
(mod 3).

From the preceding proposition, if x ∈ Z is coprime to 3, then we have
(
3
x

)
3

= 1. Thus(
1− ω
x

)
3

=

(
1− ω
x

)4

3

=

(
−3ω

x

)2

3

=

(
ω

x

)2

3

, (4.4)

from which the last two equations follow.

We are now ready for the main result of this subsection: the cubic reciprocity law in Q(ω)!

Theorem 4.9. [Eisenstein’s Law of Cubic Reciprocity] Let α, β ∈ Z[ω] be primary and relatively prime. Then(
α

β

)
3

=

(
β

α

)
3

Furthermore, if α = a+ bω with a = 3m+ 1 and b = 3n, then(
ω

α

)
3

= ω
1−a−b

3 = ω−m−n;

(
1− ω
α

)
3

= ω
a−1
3 = ωm.
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Proof. As always, we can assume α, β are prime and primary. If one of them is an integer prime, then it is

equivalent to 2 modulo 3 and this case is covered in 4.7. Thus assume αα = p ≡ 1 (mod 3) and ββ = q ≡ 1

(mod 3) are integer primes.

Case 1: p, q are distinct

Equation 4.2 applied to (p, q) and (q, p) gives us:(
q

α

)2

3

=

(
α2α

β

)
3

;

(
β2β

α

)
3

=

(
p

β

)2

3

.

Multiply these equations, substitute the factorizations for p, q, and cancel out cubes to get
(
β
α

)
3

=
(
α
β

)
3

as

we desire.

Case 2: p = q

This case is made easy by a clever manipulation:(
α

α

)
3

=

(
α+ α

α

)
3

=

(
α

α+ α

)
3

=

(
−α
α+ α

)
3

=

(
α+ α

α

)
3

=

(
α

α

)
3

.

The second equality is valid since α, α+α are relatively prime and primary, and so case 1 applies (the fourth

equality is similar).

For the first supplementary law, we first note that(
ω

α

)
3

=

(
ω2

α

)
3

=

(
ω

α

)2

3

=

(
ω

α

)
3

.

Multiplying each side by
(
ω
α

)
3

gives(
ω

α

)2

3

=

(
ω

p

)
3

= ω
1−p
3 = ω

1−a2+ab−b2
3 ,

where we used Proposition 4.8 for the second equality. Since a ≡ 1 (mod 3) and b ≡ 0 (mod 3), we get

(a − 1)2 ≡ b2 ≡ (a − 1)b ≡ 0 (mod 9), and therefore 1 − a2 + ab − b2 ≡ 1 − (2a − 1) + b − 0 ≡ −1 + a + b

(mod 9). Hence (
ω

α

)2

3

= ω−
1−a−b

3 .

Squaring this equation yields the first supplementary law.

For the second supplementary law, consider the following:(
3ω

α

)
3

=

(
−3ω

α

)
3

=

(
α− 3ω

α

)
3

=

(
α

α− 3ω

)
3

=

(
3ω

α− 3ω

)
3

.

Apply this n times, and use the first law to get(
3ω

α

)
3

=

(
3ω

a

)
3

=

(
ω

a

)
3

= ω
1−a
3 .

The second supplementary now follows easily from(
1− ω
α

)
3

=

(
1− ω
α

)4

3

=

(
−3ω

α

)2

3

= ω
a−1
3 .
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We shall end this subsection with a warning: if
(
α
β

)
3

= 1 then it does not necessarily mean that α is

a cube modulo β (just as it is for the Jacobi symbol). This mistake is easier to make now because integer

primes equivalent to 1 modulo 3 are no longer prime! As an example, 13 ≡ −1 (mod 7) hence
(
13
7

)
3

= 1, and

so we conclude that
(

7
13

)
3

= 1. Letting 13 = αα, Proposition 2.6ii told us that 7 is a cube modulo 13 if and

only if
(
7
α

)
3

= 1, not if
(

7
13

)
3

= 1. In fact, 7 is not a square modulo 13.

4.2 Quartic Reciprocity

The quartic reciprocity law is similar to the cubic law, but it is not a consequence of the Eisenstein reciprocity

law proved in the next section. Thus the result is of interest, but the methods involved are very similar to what

we have already seen, so we will present the key steps only. For a full breakdown, see sections 6.2 and 6.3 of [3].

We are working in Q(ζ4) = Q(i), which has Z[i] as the ring of integers.

Definition 4.10. Call x ∈ Z[i] primary if x ≡ 1 (mod 2 + 2i).

Proposition 4.11. Let p ≡ 1 (mod 4) be an integer prime, let χ be a character of order 4 on Fp, and let

J(χ, χ) = a+ bi with a, b ∈ Z. Then a ≡ 1 (mod 4), p = a2 + b2, and

J(χ, χ2) = χ(−1)J(χ, χ), G(χ)4 = p · J(χ, χ)2.

Proposition 4.12. Let π ≡ 1 (mod (1+ i)3) be prime in Z[i], and let χ =
( ·
π

)
4

be the power residue symbol.

Then

J(χ, χ) = χ(−1)π, J(χ, χ2) = π, G(χ)4 = π3π.

Theorem 4.13 (Quartic Reciprocity Law). Let α = a + bi, β = c + di be relatively prime and primary

Gaussian integers. Then we have(
α

β

)
4

(
β

α

)−1
4

= (−1)
Nα−1

4
Nβ−1

4 = (−1)
a−1
2

c−1
2 = (−1)

bd
4

Furthermore, there are supplementary laws(
i

α

)
4

= i
1−a
2 ,

(
1 + i

α

)
4

= i
a−b−b2−1

4 ,

(
2

α

)
4

= i
−b
2

5 Eisenstein Reciprocity

5.1 Gauss Sum Factorization

Before we start off, we should recall a few useful facts. Let K = Q(ζn), and p be a prime ideal of K above

p ≡ 1 (mod n). Proposition 2.5 tells us that p has inertia degree 1, so p splits completely. Let χ be a multi-

plicative character on Fp, then Proposition 3.7 says G(χ)G(χ) = p, and Corollary 3.8 gives G(χ)n ∈ Z[ζn].

Hence the only prime ideals that can occur in the prime factorization of G(χ)n in Z[ζn] all lie above p.

The Galois group G = Gal(K/Q) acts transitively on the prime ideals above p, hence letting µ = G(χ)n

we can write µOK = pγ , where γ =
∑
σ
bσσ ∈ Z[G] (note that γ depends on the choice of p lying above p).

Thus to determine the factorization, it suffices to determine γ. We will do so with a series of lemmas.

Lemma 5.1. Let γ =
∑
σ
bσσ be defined as above. Then

∑
σ∈G

bσ =
1

2
nφ(n),

and 0 ≤ bσ ≤ n,
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Proof. Taking norms, we find that

NK/Qµ = NK/Qp
γ = p

∑
σ∈G bσ , and

NK/Qµ
2 = NK/Q(µµ) = NK/Q(pn) = pnφ(n).

Squaring the first equation and equating to the second gives the equality. The first half of the inequality is

from G(χ)n = µ ∈ Z[ζn] (it is integral over Z), and the second half is from µµ = pn.

Note that if S = {x|1 ≤ x ≤ n, gcd(n, x) = 1} then the size of S is φ(n) and the sum of the elements of

S is 1
2nφ(n) (pair up x with n− x). As the Galois group has size φ(n), this suggests that S and {bσ} are the

same set.

Lemma 5.2. Let χ be a character with order n on Fp where p ≡ 1 (mod n). Let G(χ) be the Gauss sum

associated to χ, and put L = Q(ζn, G(χ)). Then L ⊂ Q(ζnp) and [L : Q(ζn)] = n.

Proof. The inclusion Q(ζn) ⊂ L ⊂ Q(ζnp) is clear. All extensions here are abelian, so Gal(L/Q(ζn)) is a

subgroup of Gal(Q(ζnp)/Q(ζn)) ∼= Gal(Q(ζp)/Q) (the inclusion is clear, and the groups are isomorphic since

both have the size φ(p) = p− 1 as n, p are coprime). Therefore this Galois group is cyclic.

Take g to be a primitive root in Fp, and let σ ∈ Gal(Q(ζnp)/Q) be σ : ζp → ζgp and ζn → ζn. As χ

has order n, and g is a primitive root, we see that χ(g) must be a primitive nth root of unity. Now, σ is a

generator for Gal(Q(ζnp)/Q(ζn), hence σ|L generates Gal(L/Q(ζn). We have

G(χ)σ = −
p−1∑
t=1

χ(t)ζgtp = χ(g)−1G(χ),

whence σn is the smallest power of σ which fixes L. Thus Gal(L/Q(ζn)) is cyclic of order n, generated by

σ|L, and the conclusion follows.

Lemma 5.3. Let γ =
∑
σ
bσσ be defined as before. Then gcd(bσ, n) = 1.

Proof. Let p be a prime above p in K with pa||G(χ)n = µ; we need to show gcd(a, n) = 1. Since G(χ) satisfies

f(x) = xn − µ in K[x], and [L : K] = n from the above lemma, f(x) is the minimal polynomial of G(χ) over

K[x].

Recall that K ⊂ L ⊂ Q(ζn, ζp), p ramifies completely in Q(ζp) and splits completely in Q(ζn). Hence K is

the decomposition field of p inside Q(ζn, ζp), and p ramifies completely in any field between K and Q(ζn, ζp).

Thus there is exactly one prime ideal q of OL that lies above p, and p = qn. We have

Kp[x]

f(x)
= L⊕Kp

∼= ⊕P|pLP = Lq.

In particular, this implies that f(x) is irreducible in Kp[x].

Let w = gcd(n, a), and since qna = pa||G(χ)n, we get qa||G(χ). In Lq, we have G(χ) = qau where u is a

unit (recall that complete fields are PIDs, so we can work with our prime ideal as being an actual element).

So µ = paun in Kp and v = un must be a unit of Kp. Now, g(x) = xn−v has a solution in Lq, so this descends

to a solution of g(x) in the residue field, which is Fp (q has inertia degree 1). As v is a unit, v 6= 0 in Fp, and

so the root in Fp is nonzero. But Fp contains all nth roots of unity, hence g(x) is separable and splits in Fp!
The residue field of Kp is also Fp, whence as g(x) ∈ Kp[x], we see that its reduction is separable and splits in

the residue field of Kp, so by Hensel’s lemma all roots of g(x) are in Kp. So u ∈ Kp, and µ = unpa is true in Kp.

Take f(x) = xn−µ, and then x
n
w−u nw p aw |f(x) in Kp[x]. Since f(x) is irreducible inKp[x], this immediately

implies that w = 1, hence the lemma is proven.
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For 1 ≤ a ≤ n coprime to n, let σa ∈ Gal(K/Q) denote the automorphism of K given by ζn → ζan.

Write γ =
∑

(a,n)=1

baσa. For θ ∈ Gal(L/Q), let e(θ) ∈
( Z
nZ
)×

be defined by θ : ζn → ζ
e(θ)
n . Thus we see that

θ|K = σe(θ).

Lemma 5.4. With the notation above, we have θγ ≡ e(θ)γ (mod n).

Proof. Let A = G(χ)θ−e(θ) ∈ L; I claim that A ∈ K. Let α ∈ Gal(L/K) be a generator of this cyclic group,

where we associate Gal(L/K) with a subgroup of Gal(L/Q), and we may also think of α as the restriction

of an element of Gal(Q(ζnp)/Q) (this was explored in Lemma 5.2). So, α : ζn → ζn and α : ζp → ζgp for some

g coprime to p. In Lemma 5.2, we showed that G(χ)α = χ(g)−1G(χ). Since Gal(L/Q) is abelian, we have

Aα =
α(θ(G(χ)))

α(G(χ)e(θ))
=
θ(α(G(χ)))

α(G(χ))e(θ)
=

θ(χ(g)−1G(χ))

(χ(g)−1G(χ))e(θ)
=

1

χ(g)θ−e(θ)
A.

But χ(g) is an nth root of unity, so χ(g)e(θ) = σe(θ)(χ(g)). As θ|K = σe(θ), we get Aα = A. Since α generates

Gal(L/K), this implies that A ∈ K as claimed.

We now get An = µθ−σe(θ) in OK , so all exponents of prime powers on the right hand side are multiples

of n. Pluging in µ = pγ yields the claim.

Note that the above implies that σe(θ)γ = θγ ≡ e(θ)γ (mod n), or more simply, σcγ ≡ cγ (mod n). So

σcγ =
∑

σcbaσa =
∑

baσac,

and

σcγ ≡ cγ =
∑

cbaσa =
∑

cbacσac (mod n).

Equating coefficients gives us cbac ≡ ba (mod n), or bac ≡ c−1ba (mod n) for all a, c ∈ (Z/nZ)×. In particular,

bc ≡ c−1b1 (mod n), so since b1 is coprime to n, we see that the set of bc forms a complete residue set

modulo n as we suspected. As 1 ≤ bi ≤ n, we in fact get that bc ≡ c−1b1 (mod n) defines bc uniquely, and

{b1, . . . , bφ(n)} = {x|1 ≤ x ≤ n, gcd(x, n) = 1}. Thus bi = 1 for some i, and we can change which p we choose

so that b1 = 1. We summarize our result in the following proposition.

Proposition 5.5. Let χ be a character on Fp of order n, where p ≡ 1 (mod n) is an integer prime, and take

G(χ) to be the corresponding Gauss sum. Let K = Q(ζn), and σt ∈ Gal(K/Q) be σt : ζn → ζtn for 1 ≤ t ≤ n
and gcd(t, n) = 1. Then there exists a prime ideal p above p in K such that

G(χ)nOK = pγ , γ =
∑

1≤t≤n
gcd(t,n)=1

t−1σt, (5.1)

where t−1 is the smallest positive integer such that t−1t ≡ 1 (mod n).

An amazing part of the above proposition is it is true for any character of order n on Fp! However we still

have a small hole: with
( ·
p

)
n
, we do not know which prime ideal to choose! Let χ =

( ·
p

)−1
n

(note we take the

inverse), and we claim that p||G(χ)n. Now, p = Pp−1 in Q(ζpn), so we get

p||G(χ)n ⇐⇒ Pp−1||G(χ)n ⇐⇒ P
p−1
n ||G(χ).

Let m = p−1
n and Π = ζp − 1; note that since Π generates the unique prime ideal above p in Q(ζp), then

P||Π. The result of Pm||G(χ) follows immediately from the following proposition.

Proposition 5.6. Inheriting the above notation, the following congruence holds

G(χ) ≡ Πm

m!
(mod Pm+1).
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Proof. The following computation yields our result:

−G(χ) =

p−1∑
t=1

χ(t)ζtp =

p−1∑
t=1

χ(t)(1 + Π)t =

p−1∑
t=1

χ(t)

t∑
j=0

(
t

j

)
Πj

≡1,2
m∑
j=0

p−1∑
t=1

tp−1−m
(
t

j

)
Πj =3,4

p−1∑
t=1

tp−1−m
(
t

m

)
Πm

=4

p−1∑
t=1

tp−1−m
tm

m!
Πm ≡ (p− 1)

Πm

m!
≡ −Πm

m!
(mod ΠmP)

We have used the following:

1. χ(t) ≡ tp−1−m (mod p);

2. Πj ≡ 0 (mod ΠnP) for j > n;

3.

(
t

j

)
is a polynomial of degree j in t; so when j ≤ m, tp−1−m

(
t

j

)
contains a monomial of degree divisible

by p− 1 if and only if j = m;

4.
p−1∑
t=1

tk ≡ 0 (mod p) if p− 1 does not divide k (see Proposition 3.10);

5. ΠmP | p;

This proposition says that when we take χ to be the inverse of the power residue symbol, then the p in

Proposition 5.5 is the p in the denominator of the power residue symbol. From G(χ−1)G(χ) = ±p, we can

get the factorization of the G(
( ·
p

)
n
). We collect our conclusion into the following theorem.

Theorem 5.7 (Stickelberger’s Relation). Let K = Q(ζn), χ =
( ·
p

)−1
n

, where p is a prime ideal lying above

the integer prime p ≡ 1 (mod n). Take G(χ) to be the corresponding Gauss sum, and σt ∈ Gal(K/Q) be

σt : ζn → ζtn for 1 ≤ t ≤ n and gcd(t, n) = 1. Then

G(χ)nOK = pγ , γ =
∑

1≤t≤n
gcd(t,n)=1

t−1σt, (5.2)

where t−1 is the smallest positive integer such that t−1t ≡ 1 (mod n).

5.2 Eisenstein Reciprocity

Let’s start off with a proposition similar to Proposition 3.9.

Proposition 5.8. Let p ≡ 1 (mod n) be an integer prime, let p be a prime ideal above p in K = Q(ζn), and

let µ = G(χ)n where G(χ) is the Gauss sum corresponding to χ =
( ·
p

)−1
n

(note the inverse). Then for all

prime ideals q in OK coprime to pn we have(
µ

q

)
n

=

(
Nq

p

)
n

, (5.3)

where Nq = qf is the norm of q over Q.

Proof. As q - n, the equation xn − 1 is separable in Fq, and as K contains all nth roots of unity, their

reductions modulo q form a subgroup of F×
qf

of order n, hence qf ≡ 1 (mod n). Thus

(−G(χ))q
f

≡
∑
t

χ(t)q
f

ζtq
f

p =
∑
t

χ(t)ζtq
f

p

= −χ(qf )−1G(χ) =

(
Nq

p

)
n

(−G(χ)) (mod qOK).
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Therefore (−G(χ))q
f−1 ≡

(
Nq
p

)
n

(mod q). We also have

(−G(χ))q
f−1 = ((−1)nµ)

qf−1
n ≡

(
µ

q

)
n

(mod q),

and equating the two expressions gives us the result (as normal, we can drop the modulo q).

Definition 5.9. For each prime ideal p - n in Z[ζn] define Φ(p) = G(χp)n where χp =
( ·
p

)−1
n

. Extend Φ

multiplicatively to all ideals coprime to n.

From the multiplicativity of Φ, the power residue symbol, the norm, and Proposition 5.8 we get(
Φ(a)

q

)
n

=

(
Nq

a

)
n

, (5.4)

for all ideals a which are products of prime ideals of degree 1 not dividing n.

Now, if a = αOK is principal and a product of prime ideals with inertia degree 1, then there is a unit

ε(α) ∈ O×K such that

Φ(a) = ε(α)αγ , (5.5)

where γ is defined in Equation 5.2. Note that all results in this section have not required n to be an odd

prime; we will finally introduce that restriction. Let n = ` be an odd prime, and then(
σ−1t (αt)

q

)
`

=

(
σ−1t (α)

q

)t
`

=

(
σ−1t (α)

q

)σt
`

=

(
α

qσt

)
`

.

Upon multiplying this over t, we get (
αγ

q

)
`

=
∏
t

(
α

qσt

)
`

=

(
α

Nq

)
`

. (5.6)

This looks very promising: combining 5.4 and this last equality gets us something that starts to approach

a reciprocity law. However, at the moment there are two major problems: we have the factor of ε(α) to

deal with, and the equations are only valid when the primes dividing α have inertia degree 1. Before dealing

with those problems, we will introduce the concept of semi−primary numbers (similarly to in the cubic case).

Definition 5.10. Let ` be an odd integer prime, and call α ∈ Z[ζ`] semi-primary if α and ` are coprime,

and α ≡ a (mod (1− ζl)2) for some a ∈ Z (note that a is necessarily nonzero).

To familiarize ourselves with working with semi-primary numbers, the following proposition suffices.

Proposition 5.11. Let ` be an odd prime, and assume that gcd(α, `) = 1 for some α ∈ Z[ζ`]. Then there is

a unique c ∈ Z
lZ such that ζc`α is semi-primary;

Proof. Let λ = 1− ζ`; then (λ) is the unique prime ideal in Q(ζ`) above `. Since powers of ζ` form an integral

basis for OQ(ζ`), powers of λ = 1− ζ` do as well, and thus α ≡ a+ bλ (mod λ2) for some a, b ∈ Z. As α, ` are

coprime, we see ` - a, so choose c ∈ Z by c ≡ ba−1 (mod `). Since ζc` = (1 − λ)c ≡ 1 − cλ (mod λ2), we see

ζc`α ≡ (a + bλ)(1 − cλ) ≡ a + (b − ac)λ ≡ a (mod λ2) as required. Clearly the implications hold in reverse,

i.e. c is uniquely defined modulo `.

The first use of semi-primary numbers comes now: if α is semi-primary, then ε(α) is an `th power!

Lemma 5.12. The unit ε(α) defined in Equation 5.5 has the following properties:

i) ε(α) is a root of unity.

ii) If α is an semi-primary and n = ` is an odd integer prime, then ε(α) = ±1.
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Proof. i) Let K = Q(ζn); I claim it is sufficient to show that |ε(α)| = 1. Indeed, assuming this, then as

complex conjugation is in the abelian Galois group Gal(K/Q), for all σ ∈ Gal(K/Q) we have 1 = σ(1) =

(ε(α)ε(α))σ = ε(α)σε(α)σ = |ε(α)σ|2. But |ε(α)σ| = 1 for all σ ∈ Gal(K/Q) implies that α is an nth root

of unity by a theorem of Kronecker (Here’s a summarized proof: let ε(α) and its conjugates be r1, . . . , rk.

Let fi(x) ∈ K[x] be the polynomial with roots {rij}kj=1; simple Galois theory shows that this is in fact a

polynomial in Z[x]. The condition now gives us that the coefficients are bounded in Z, hence for some powers

we get the roots being the same and in the same order, and thus equating them shows that they are roots of

unity).

Hence we need to show that |ε(α)| = 1. First, |Φ(p)|2 = pn = (Np)n for all prime ideals of inertia degree 1,

hence |Φ(α)|2 = |N(α)|n. Note that σ−1 is complex conjugation, and so |αγ |2 = αγαγσ−1 . We calculate

γ(1 + σ−1) =
∑
t

t−1σt +
∑
t

t−1σtσ−1 =
∑
t

t−1σt +
∑
t

t−1σ−t

=
∑
t

t−1σt +
∑
t

(n− t−1)σt = n
∑
t

σt,

whence |αγ |2 = |N(α)|n yielding the claim (recall the equation Φ(α) = ε(α)αγ).

ii) Let α ≡ z (mod Λ2), where Λ = (1 − ζ`)OK is the prime ideal above the integer prime `, and z ∈ Z.

For σ ∈ Gal(K/Q), Λσ = Λ (the Galois group acts transitively on the primes above `, which is only Λ).

Applying σ to our equation yields ασ ≡ z (mod Λ2). Thus

αγ ≡ z1+2+···+(`−1) ≡ z
`(`−1)

2 ≡
(
z

`

)`
2

≡ ±1 (mod Λ2).

If we can show that Φ(α) ≡ ±1 (mod Λ2), then ε(α) ≡ ±1 (mod Λ2) and so ε(α) is a semi-primary root of

unity, whence it is ±1.

As per normal, we only need to check this when α = p is a prime ideal. We calculate

Φ(α) = G(χp)` = (−
∑
t6=0

χp(t)ψ(t))` ≡ −
∑
t6=0

χp(t)`ψ(t)` = −
∑
t6=0

ψ(`t)

= ψ(0) = 1 (mod `),

and we are done since Λ2 | ` as ` > 2.

Let α ∈ Z[ζ`] be semi-primary, let σ : ζ` → ζr` be a generator of Gal(K/Q), and define

β = αS , S =
∏
e|`−1
e 6=`−1

(1− σe).

Let p be a prime ideal of degree f > 1 that divides β, and let the integer prime p above p split into a product

of e prime ideals; then ef = `−1. As f > 1, 1−σe occurs in the product, and so we can write S = h(σ)(1−σe)
for some integer polynomial h(x). But σe fixes p, so p occurs equally often in the numerator and denominator

of β = (αh(σ))1−σ
e

, whence p does not occur in the factorization of βOK ! Thus βOK is a product of prime

ideals of inertia degree 1.

Let q be any prime ideal coprime to α`, and then from Equations 5.4-5.6 and Lemma 5.12, we know that(
β
Nq

)
`

=
(
Nq
β

)
`
. Let Nq = qf where q is an integer prime; then f | ` − 1, so f is coprime to `. So we get(

β
q

)f
`

=
(
q
β

)f
`

and so
(
β
q

)
`

=
(
q
β

)
`
. We also have

(
ασ

q

)
`

=
(
α
q

)σ
`

=
(
α
q

)r
`
, and we calculate (the products are
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taken over the same range as for S, namely e | `− 1 and e 6= `− 1)(
α

q

)∏
(1−re)

`

=

(
α

q

)∏
(1−σe)

`

=

(
β

q

)
`

=

(
q

β

)
`

=

(
q

α

)∏
(1−σe)

`

=

(
q

α

)∏
(1−re)

`

.

The product
∏

(1 − re) is not divisible by `, hence we conclude that
(α
q

)
`

=
( q
α

)
`

for all semi-primary

α ∈ OK and integer primes q coprime to α`. As the power residue symbol is multiplicative, we can replace

q by a ∈ Z coprime to α`. We record this result, some supplementary laws, and a couple corollaries in the

following theorem.

Theorem 5.13 (Eisenstein’s Reciprocity Law for l-th Powers). Let ` be an odd integer prime, and suppose

that a ∈ Z and α ∈ Z[ζ`] are semi-primary and relatively prime to each other. Then(
a

α

)
`

=

(
α

a

)
`

.

Furthermore, the following also hold

i)
(α
a

)
`

= 1 if α ∈ Z[ζ` + ζ−1` ] (i.e. α is real);

ii)
(a
b

)
`

= 1 for all a, b ∈ Z with gcd(a, b) = gcd(b, `) = 1;

iii) The two supplementary laws:(
ζ`
a

)
`

= ζ
(a`−1−1)/`
` ,

(
1− ζ`
a

)
`

=

(
ζ`
a

) `+1
2

`

[the second supplementary law is incorrect in [3]; they have the exponent as `−1
2 instead of `+1

2 ].

Proof. Only assertions i)-iii) remain.

i) Let G = Gal(K/Q) with K = Q(ζ`), and let τ ∈ G be complex conjugation. Then H = 〈τ〉 is a normal

subgroup of G with order 2. Let p be a prime ideal in OK above the integer prime p with inertia degree

f | `− 1. We have (
α

pτ

)
=

(
ατ

pτ

)
=

(
α

p

)τ
=

(
α

p

)−1
.

Since pf =
∏
σ∈G

pσ, we get (
α

p

)f
`

=
∏

σ∈G/H

(
α

pσpστ

)
`

= 1,

and so the result follows as gcd(f, `) = 1.

ii) This is a special case of i) for ` - a, and otherwise,
(a
b

)
`

=
(a+ b

b

)
`

= 1.

iii) First, take a = p to be an integer prime, and let pOK = p1p2 · · · pg. Suppose the inertia degree of the

pi’s is f ; then `− 1 = fg. We have(
ζ`
p

)
`

=

g∏
j=1

(
ζ`
pj

)
`

=

g∏
j=1

ζ
pf−1
`

` = ζ
g p
f−1
`

` .

Since
pfg − 1

`
=
pf − 1

`
(pf(g−1) + · · ·+ pf + 1) ≡ g p

f − 1

`
(mod `)
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the first supplementary law holds for integer primes a = p. Now,

(mn)`−1 − 1

`
=
m`−1 − 1

`
n`−1 +

n`−1 − 1

`

≡ m`−1 − 1

`
+
n`−1 − 1

`
(mod `)

shows the first law holds for all a (by repeated applications of the above equation).

The second law holds from the first law, i), and that (1− ζ`)2ζ−1` is real.

Remark. Takagi extended Eisenstein’s result to arbitrary number fields K containing ζ` (page 393 of [3]).

6 Artin’s Reciprocity Law

6.1 The Artin Symbol

Let L/K be a finite Galois extension of number fields, and let P be a prime ideal in OL which is unramified

in L/K.

Definition 6.1. The Frobenius automorphism φ of P is the unique automorphism φ ∈ Gal(L/K) such that

φ(α) ≡ αNp (mod P) (6.1)

for all α ∈ OL\P, where p is the prime ideal in OK below P, and Np is the norm of p.

The existence and uniqueness of φ is easily seen when looking at the local picture. Indeed, let Np = q,

and let f = [LP : Kp] = |Gal(LP/Kp)|. As p is unramified, we recall that the residue field of LP is Fqf , and

that Gal(LP/Kp) ' Gal(Fqf /Fq) (pg30 of [2]). Thus the Frobenius automorphism of Gal(Fqf /Fq), which

sends α → αq, corresponds to a unique automorphism of Gal(LP/Kp). This group injects into Gal(L/K),

with image being the decomposition group of P (pg24 of [2]). Translating the original action on Fqf to L

gives Equation 6.1. Given a φ satisfying Equation 6.1, we see that if α ∈ OL\P then φ(α) ∈ OL\P, whence

φ(P) = P, and so φ is in the decomposition group of P. Therefore we can work backwards and see that φ

must be unique, as claimed.

Definition 6.2. The Frobenius symbol is

φ =

[
L/K

P

]
where φ is the Frobenius automorphism defined above.

Lemma 6.3. Let σ ∈ Gal(L/K). Then [
L/K

Pσ

]
= σ

[
L/K

P

]
σ−1.

Proof. First, note that P being unramified implies Pσ is also unramified, so our expression is defined. Now,

apply σ to Equation 6.1, and we get

σ(α)Np = σ(αNp) ≡ (σ

[
L/K

P

]
)α = (σ

[
L/K

P

]
σ−1)σ(α) (mod Pσ),

for all σ(α) with α ∈ OL\P. Letting β = σ(α), this is the same as saying

βNp ≡ (σ

[
L/K

P

]
σ−1)β (mod Pσ)

for all β ∈ OL\Pσ, and we deduce the result.
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Now assume L/K is abelian. Then for any σ ∈ Gal(L/K), we have[
L/K

Pσ

]
= σ

[
L/K

P

]
σ−1 =

[
L/K

P

]
.

Recalling that the Galois group acts transitively on the primes above p, we thus see that the Frobenius symbol

does not depend on the prime above p. This knowledge allows us to now define the Artin symbol.

Definition 6.4. Let L/K be a finite abelian extension of number fields, and let p ∈ OK be an unramified

prime ideal. Let P be any prime ideal of L lying above p, and then define the Artin symbol
(L/K

p

)
as(

L/K

p

)
=

[
L/K

P

]
.

Extend this multiplicatively on the bottom to all ideals α of OK coprime to disc(L/K) (i.e. the unramified

ideals).

It is important to remember that the Artin symbol is not an element of L, but an automorphism in the

Galois group of L/K. Furthermore, it is only defined for products of unramified primes. We now can record

the connection to the power residue symbol.

Proposition 6.5. Let K be a number field that contains a primitive nth root of unity, ζn. For any α ∈ K×,

put L = K( n
√
α), and let p be any prime ideal of OK which is unramified in L/K (p - nα suffices). Then the

following identity holds: (
L/K

p

)
( n
√
α) =

(
α

p

)
n

n
√
α (6.2)

Proof. By definition, the left hand side is congruent to ( n
√
α)Np (mod P) for any prime P lying above p.

But p is unramified, so combining these congruences shows that the left hand side is congruent to ( n
√
α)Np

(mod p). The right hand side is congruent to α(Np−1)/n n
√
α = αNp/n (mod p), whence the Equation 6.2 is

true modulo p. The left hand side is a Galois conjugate of n
√
α; they are ζjn

n
√
α for 1 ≤ j ≤ n, which is the

form the right hand side takes. But these n possibilities are distinct modulo p, and so the result follows.

6.2 Artin’s Reciprocity Law

Let k be a number field; recall a place on k is an equivalence class of absolute values. Non-archimedean/finite

places correspond to completing with respect to a prime ideal, and archimedean/infinite places correspond

to embedding k into C and taking the regular absolute value. As such, a real infinite place is an embedding

σ : k → R.

Definition 6.6. A divisor m is the formal product of finite or infinite real places of K. We write m =
∏

pnii ,

where the pi are either prime ideals (representing completion with respect to that prime ideal) or infinite real

places.

Let IK be the group of fractional ideals of K, and take Am to be the subgroup consisting of the fractional

ideals whose prime ideal factorization contains no prime ideal dividing m (clearly, the infinite places which

may form a part of m have no effect on Am). Let H0
m be the subgroup of Am consisting of the principal ideals

which can be written as (α), where α ≡ 1 (mod m). That is, if pi is a prime ideal, α ≡ 1 (mod pnii ), and if

pi is an infinite real place σ : K → R, we have σ(α) > 0. It is clear that H0
m has finite index in the group of

principal ideals of Am, which has finite index in Am. Thus for any m we get a finite group Am/H
0
m.

Let Hm be any subgroup of Am containing H0
m. Suppose that m | n; note we have Am ⊃ An and H0

m ⊃ H0
n .

Take Hn = Hm ∩An ⊃ H0
n , then there is a canonical injection An/Hn ↪→ Am/Hm. Recalling our definition of
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H0
m, we see that for every coset αH0

m in Am, we can take α ∈ An (a coset is just a residue class modulo m,

and since m | n, we can ensure the extra conditions of being coprime to n are met). As Hm ⊃ H0
m, the same

is true for Hm, and therefore our injection is a bijection, that is

An

Hn
' Am

Hm

canonically.

Let m1,m2 be two divisors with respective associated groups Hm1
, Hm2

. Call these groups equivalent if

for some (hence all) common multiples m of m1,m2 we have

Am ∩Hm1
= Am ∩Hm2

.

It is clear that this is an equivalence relation, and the canonical isomorphism shows that the quotient group

Am/Hm is independant of the choice of m (within an equivalence class).

Definition 6.7. The equivalence class of the above quotient groups is called the congruence divisor class

group A/H. The least divisor m for which this can be realized is called the conductor f of A/H (where A/H

of course refers to Am/Hm for any multiple m of f).

Definition 6.8. A finite extension L of K is called a class field for A/H if the prime ideals p of K which

split completely in L are precisely the ones belonging to H. For the infinite real places of K, this means that

we require that all extensions to L are complex if the place was in f, and all extensions are real otherwise.

We can now state a classical theorem in class field theory, and Artin’s reciprocity law (note that there

are several equivalent formulations of the law, we will only state one version).

Theorem 6.9. Let L/K be a finite abelian extension of number fields. Then it is a class field for some A/H.

Moreover, for each congruence divisor class group A/H in K, there is a unique class field L/K; L is abelian

over K.

Theorem 6.10 (Artin’s Reciprocity Law). The Galois group of L/K is isomorphic to A/H. This isomor-

phism is in fact canonical, realized by the map a →
(L/K

a

)
, which is a surjective homomorphism A →

Gal(L/K) with kernel H.

6.3 The Hilbert Symbol

Before deducing reciprocity laws, we need to introduce the local Artin map, as well as the Hilbert symbol. Let

K be a number field containing a primitive nth root of unity ζn, and assume L is a finite abelian extension of

K. If p is a prime ideal of K, then completing L with respect to any prime ideal of L above p gives isomorphic

fields (as L/K is abelian). We will call this field Lp for simplicity.

Definition 6.11. Let v be a place of K. The local Artin map is a map ψv : K×v → Gal(L/K). If v = p is

finite and Lp/Kp is unramified, then ψp is given by

β →
(
L/K

p

)vp(β)
To define ψv in general, it involves giving a map K×v → A/H (see page 107 of [4]), where A/H is the

congruence divisor class group corresponding to L/K, and then mapping A/H isomorphically to Gal(L/K)

via Artin’s reciprocity law.
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Remark. The local Artin map is defined on K×v , so when we use it on K× we really mean the restriction of

it to K×.

Definition 6.12. Let v be a place of k. The Hilbert symbol is a function (−,−)v : K× ×K× → 〈ζn〉 ⊂ C×

given by

(α, β)v(
n
√
α) = (ψv(β))( n

√
α),

where ψv is the local Artin map corresponding to the abelian extension K( n
√
α)/K.

Lemma 6.13. The following simple properties of the Hilbert symbol hold:

i) (α, ββ′)v = (α, β)v(α, β
′)v;

ii) (αα′, β)v = (α, β)v(α
′, β)v;

iii) (α,−α)v = (α, 1− α)v = 1;

iv) (α, β)v(β, α)v = 1;

v) If either α or β is an nth power, then (α, β)v = 1. Thus the Hilbert symbol descends to a map K×

(K×)n ×
K×

(K×)n → 〈ζn〉.

Proof. i)-iii) are relatively simple manipulations; see page 108 of [4].

iv) Using bilinearity and iii) give

1 = (αβ,−αβ)v = (α,−α)v(α, β)v(β, α)v(β,−β)v = (α, β)v(β, α)v

v) If α = γn, then K( n
√
α) = K so the local Artin map is trivial. If β = γn, then as K( n

√
α)/K is cyclic of

order dividing n, we have ψv(β) = ψv(γ)n = id so the local Artin map is again trivial. The local Artin map

being trivial then implies that (α, β)v = 1.

Remark. The Hilbert symbol can be extended continuously to a map on K×v ×K×v with analogous properties;

see page 109 of [4].

Definition 6.14. Let S denote the set of infinite places of K, unioned with the set of prime ideals dividing

n. For any α1, α2, . . . , αi ∈ K×, let S(α1, α2, . . . , αi) be the union of S with the set of primes for which

α1, α2, . . . , αi are not units (i.e. the set of primes dividing the numerator or denominator of at least one of

the αj ’s). Note that S and S(α1, α2, . . . , αi) are always finite.

Proposition 6.15. Let α, β ∈ K×. Then ∏
v

(α, β)v = 1.

Proof. This follows from properties of the local Artin map; see page 109 of [4].

Note that this is a finite product: if v = p, where p is a prime ideal not in S(α, β), then K( n
√
α)/K is

unramified at p and vp(β) = 0, whence ψp(β) = id, the identity map. Thus (α, β)p = 1 for all such p, and

only finitely many prime ideals are in S(α, β), completing the claim.

Proposition 6.16. If p /∈ S, then for α, β ∈ K× we have

(α, β)p =

(
γ

p

)
n

where γ = (−1)vp(α)vp(β)αvp(β)β−vp(α).

Proof. First, assume α ∈ OK is coprime to p, and let π ∈ K× be so that p||π. Then

(α, π)p( n
√
α) =

(
K( n
√
α)/K

p

)vp(π)
( n
√
α) =

(
K( n
√
α)/K

p

)
( n
√
α) =

(
α

p

)
n

n
√
α,

25



where the last equality is by Proposition 6.5. Therefore we get (α, π)p =
(
α
p

)
n
.

Now for α, β ∈ K×, write α = πvp(α)α0 and β = πvp(β)β0. Using bilinearity and (−π, π)p = 1 we obtain

(α, β)p = (−1, π)
vp(α)vp(β)
p (π, β0)

vp(α)
p (π, α0)

−vp(β)
p = ((−1)vp(α)vp(β)α

vp(β)
0 β

−vp(α)
0 , π)p = (γ, π)p,

from which the result follows (the p’s cancel to give the last equality).

Corollary 6.17. If α, β ∈ K× and p /∈ S(α), then

(α, β)p =

(
α

p

)vp(β)
n

.

Proof. Use vp(α) = 0 in the above proposition.

Definition 6.18. For α, β ∈ K×, let (β)S(α) denote the ideal obtained from starting with (β), and removing

all prime factors which are in S(α). Also, define(
α

β

)
=

(
α

(β)S(α)

)
n

.

If S(α) = Ok (this happens when β is a unit), define
(
α
β

)
= 1.

Proposition 6.19. For α, β ∈ K× we have(
α

β

)(
β

α

)−1
=

∏
v∈S(α)∩S(β)

(β, α)v.

Proof. Using Corollary 6.17, we see that(
α

β

)
=

(
α

(β)S(α)

)
n

=
∏

p/∈S(α)

(
α

pvp((β)
S(α))

)
n

=
∏

p/∈S(α)

(
α

p

)vp(β)
n

=
∏

p/∈S(α)

(α, β)p,

noting that vp(β) = vp((β)S(α)) when p /∈ S(α). Using this and Lemma 6.13iv, we calculate(
α

β

)(
β

α

)−1
=

{ ∏
p/∈S(α)

(α, β)p

}{ ∏
p/∈S(β)

(β, α)−1p

}

=

{ ∏
p/∈S(α)

(α, β)p

}{ ∏
p/∈S(β)

(α, β)p

}
=

∏
p/∈S(α)∩S(β)

(α, β)p,

since the terms appearing in both products correspond to p /∈ S(α, β); but (α, β)p = 1 for such p (noted after

Proposition 6.15), so they have no effect on the product. To finish, apply Proposition 6.15, and use Lemma

6.13iv to finish.

Now we have an expression which looks more like a reciprocity law than Artin’s law! Note that if α, β ∈ OK
are coprime to each other and to n, then

(
α
β

)
=
(
α
β

)
n
, so to deduce reciprocity laws we just need to calculate

(β, α)v for v ∈ S(α) ∩ S(β).

26



7 Deducing Reciprocity Laws

7.1 Quadratic Reciprocity Revisited

Take n = 2, and note that (α, β)v = ±1 as it must be a square root of 1. So we just need to find a condition

on α, β, v that is equivalent to (α, β)v = 1. From page 111 of [4], this condition is simply

(α, β)v =

{
1 if αx2 + βy2 = 1 has a solution in Kv,

−1 otherwise.

Take K = Q, then S = {2,∞} and Q∞ = R. Let a, b be coprime odd positive integers, then ax2 + by2 = 1

has a solution in R, for example (x, y) = (0,
√

1
b ). Therefore we get(

a

b

)
2

(
b

a

)−1
2

= (b, a)2 (7.1)

Lemma 7.1. If a, b ∈ Z+ are coprime odd positive integers, then

(b, a)2 =

{
−1 if a ≡ b ≡ 3 (mod 4),

1 else.

Proof. It suffices to see whether ax2 + by2 = 1 has a solution in Q2 or not. We will divide into cases.

Case 1: Either a ≡ 1 (mod 8) or b ≡ 1 (mod 8).

Wlog we can assume a ≡ 1 (mod 8). Then letting f(x) = ax2 − 1, we have |f(1)| = |a − 1| ≤ 2−3 whereas

|f ′(1)|2 = |2a|2 = 2−2 > |f(1)|, so there is a solution r to f(x) = 0 by Hensel’s Lemma. Then (r, 0) is a

solution to ax2 + by2 = 1 as required.

Case 2: We have a ≡ 5 (mod 8) or b ≡ 5 (mod 8).

Wlog we have a ≡ 5 (mod 8), and as b is odd we get 4b ≡ 4 (mod 8). Let f(x) = ax2 + 4b− 1, and proceed

exactly as in case 1, except the solution to ax2 + by2 = 1 is now (r, 2) where f(r) = 0.

Case 3: We have a ≡ b ≡ 3 (mod 4).

If we have a solution, then by multiplying through by a suitable power of 2, we can get a solution to

ax2 + by2 = 22m for some m ≥ 0 with x, y ∈ Z2. Wlog one of x, y is odd, as otherwise we either have a

contradiction if m = 0, or we can divide through by 4. Now, z2 ≡ 0, 1 (mod 4) for z ∈ Z2, so ax2 + by2 ≡ 2, 3

(mod 4). But 22m ≡ 0, 1 (mod 4) so this is a contradiction, and thus we cannot have a solution.

As a corollary of the above lemma and Equation 7.1, we immediately get the full law of quadratic reci-

procity! Note that we proved it for all odd coprime a, b and not just for primes. It is also clear how one can

go about generalizing the law to number fields other than Q, something which isn’t necessarily clear in more

elementary proofs. We will always have a solution to ax2 + by2 = 1 in the infinite places, so we just need

to factorize 2 in OK , and use Hensel’s lemma on appropriate polynomials in the corresponding complete fields.

7.2 Towards Eisenstein Reciprocity

As the Hilbert symbol is fairly difficult to define, one would expect some difficulty in calculating (α, β)v
in general. While n = 2 was fairly straightforward, n = 3 already becomes a bit tricky. We will follow the

programme set forth in exercise 5.6 of [4], which is quite similar to the approach found in exercise 2 of [1].
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For this section, let n = p be an odd prime, let ζp be a pth primitive root of unity, and let K = Qp. Let

π = 1− ζp, so that p = (π) is the unique prime above p, hence this is the only finite place in S.

Proposition 7.2. Let α, β ∈ Z[ζp] be coprime to each other and to p. Then we have(
α

β

)
p

(
β

α

)−1
p

= (β, α)p.

Proof. As noted just below Proposition 6.19, we have
(
α
β

)
=
(
α
β

)
n

and
(
β
α

)
=
(
β
α

)
n
. Next, all infinite places

v of K have C as their completion, hence the corresponding local Artin maps are all trivial (the Galois group

in question has one element!) and thus (α, β)v = 1. Therefore using Proposition 6.19 and that p is the only

finite element of S gives us the result.

Let o×p = {α ∈ K×p |vp(α) = 0} be the group of units of OKp
, and let U0 = o×p . Take ηr = 1−πr for r ≥ 1,

and let Ur = {α ∈ K×p |α ≡ 1 (mod πr)}, a group under multiplication.

Lemma 7.3. The following four results hold:

i) The image of π generates K×p /o
×
p .

ii) o×p = (o×p )pU1.

iii) For each r ≥ 1, the image of ηr generates Ur/Ur+1.

iv) Up+1 ⊂ Up1

Proof. i) Recall that p = (π); the result is now obvious.

ii) If α ∈ o×p , then as Np = N(π) = p we have

α1−p = (αp−1)−1 ≡ 1−1 ≡ 1 (mod π).

Letting α1−p = γ, we see that γ ∈ U1 and α = αpγ ∈ (o×p )pU1 as required.

iii) Since
Kp

π ' Fp, α ∈ K×p can be written uniquely as α =
∞∑
i=m

aiπ
i where 0 ≤ ai ≤ p − 1, m ∈ Z,

and am 6= 0 (hence vp(α) = m). Therefore we can take {1, 1 + πr, 1 + 2πr, . . . , 1 + (p− 1)πr} as representa-

tives for the cosets of Ur/Ur+1. Since ηir ≡ 1−iπr (mod πr+1), we see that the image of ηr generates Ur/Ur+1.

iv) We will use an idea similar to Hensel’s lemma here; start with α ∈ Up+1. Write πp−1 = up for some

unit u ∈ OKp
, and let b0 = 1. We construct a sequence b0, b1, . . . such that

α ≡ bpj (mod πj+p+1) bj+1 ≡ bj (mod πj+2).

First, note that b0 satisfies the first equivalence. Given bj , let α ≡ bpj + xπj+p+1 (mod πp+j+2), and write

bj+1 = bj + yπj+2, where y must be in OKp
. To satisfy the first equivalence we thus need

bpj + xπj+p+1 ≡ (bj + yπj+2)p ≡ bpj + pyπj+2bp−1j ≡ bpj +
ybp−1j

u
πp+j+1 (mod πj+p+2).

Taking y =
xu

bp−1j

works (noting that bj is a unit as bj ≡ b0 ≡ 1 (mod π)), so we define bj+1 using this value

of y. Now, the second equivalence guarantees us that β = lim
j→∞

bj exists in Kp, and the first equivalence gives

us α = βp. Since bj ≡ 1 (mod π), we have β ∈ U1 and the result follows.

Corollary 7.4. The set {π, η1, η2, . . . , ηp} generate K×p /(K
×
p )p

28



Proof. For α ∈ K×p , using Lemma 7.3i and ii, we can write α = πeγpu1 where e ∈ Z, γ ∈ o×p , and u1 ∈ U1.

Using part iii repeatedly, we get

α = πeγpηe11 η
e2
2 · · · ηepp up+1,

where e1, e2, . . . , ep ∈ Z and up+1 ∈ Up+1. But part iv shows that up+1 ∈ Up1 ⊂ (K×p )p whence

α ∈ πeηe11 η
e2
2 · · · ηepp

K×p

(K×p )p
.

As α was arbitrary, the corollary follows.

Thus to calculate (α, β)p we only need to consider when α, β lie in the set {π, η1, η2, . . . , ηp}. This is

accomplished in the next lemma.

Proposition 7.5. If u, v ≥ 1, then

(ηu, ηv)p = (ηu, ηu+v)p(ηu+v, ηv)p(π, ηu+v)
v
p(ηv, π)vp, (7.2)

and in particular, (ηu, ηv)p = 1 if u+ v > p. Moreover, (π, π)p = 1 and

(ηu, π)p =

{
1 if 1 ≤ u < p,

ζp if u=p.
(7.3)

Proof. Since p is odd, −1 is a pth power, so using Lemma 6.13 we get

(α, α)p = (α,−1)p(α,−α)p = 1

for all α ∈ K×p . For Equation 7.2, let β = ηv
ηu+v

= 1−πv
1−πu+v , and note that

1− β =
πv − πu+v

1− πu+v
= πv

ηu
ηu+v

.

Lemma 6.13 gives 1 = (β, 1 − β)p, so using the bilinearity of the Hilbert symbol, and 1 = (1, α)p = (α, α)p,

we can get rid of the denominators and factorize the π out to get

1 =
( ηv
ηu+v

, 1− β
)
p

=
(
ηv, π

v ηu
ηu+v

)
p
(ηu+v, π

v ηu
ηu+v

)−1p

= (ηv, π)vp(ηv, ηu)p(ηv, ηu+v)
−1
p [(ηu+v, π)vp(ηu+v, ηu)p(ηu+v, ηu+v)

−1
p ]−1,

from which Equation 7.2 follows.

If 1 ≤ u < p, then

(ηu, π)up = (ηu, π
u)p = (ηu, 1− ηu)p = 1

Thus (ηu, π)p is both a pth and a uth root of unity. But p, u are coprime, so (ηu, π)p = 1 as claimed.

If u + v > p, then from Lemma 7.3iv we have ηu+v ∈ (K×p )p, so expressions involving it evaluate to 1.

Thus applying Equation 7.2 along with the proven part of Equation 7.3 gives us (ηu, ηv)p = 1 when u+v > p

and v 6= p. If v = p, then

(ηu, ηv)p = (ηp, π)pp = (ηp, π
p)p = (ηp, 1− ηp)p = 1,

as required.
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We are finally left with calculating (ηp, π)p. Take (u, v) = (1, p− 1) in Equation 7.2, and we get

(ζp, ηp−1)p = (π, ηp)
p−1
p = (π, ηp)

−1
p = (ηp, π)p (7.4)

as the other factors are 1 (and we are working with pth roots of unity). Let β ∈ O×K have vp(β) = 0, and note

that S(ζp) = S = {p}. For finite places q 6= p, we have

(ζp, β)q =

(
ζp
q

)vq(β)
p

= ζ
vq(β)

Nq−1
p

p ,

where we used corollary 6.17 for the first equality, and the second equality is true modulo p by definition;

the only way this can be satisfied is if it is in fact an equality. We have

(ζp, β)p =
(∏
q6=p

(ζp, β)p
)−1

=
(∏
q6=p

ζ
vq(β)

Nq−1
p

p

)−1
(7.5)

where the first equality is Proposition 6.15. Thus we need to calculate
∑
vq(β)(Nq − 1) (mod p2); we can

thus restrict the sum to prime ideals dividing β. We claim that∑
q|β

vq(β)(Nq− 1) ≡ N(β)− 1 (mod p2). (7.6)

Indeed, write β = qe11 · · · qerr ; as p | Nqi − 1 write Nqi = pxi + 1 for some xi ∈ Z. Then the left hand side of

the equation is
r∑
i=1

eixip. Using binomial expansion, N(qeii ) = (1 + pxi)
ei ≡ 1 + pxiei (mod p2), hence the

right hand side is N(β)− 1 ≡
r∏
i=1

(1 + pxiei)− 1 ≡
r∑
i=1

eixip (mod p2), so the claim is proven.

Now,

N(ηp−1) = NK/Q(1− πp−1) =
∏

σ∈Gal(K/Q)

(1− σ(1− ζp)p−1) =

p−1∏
i=1

(1− (1− ζip)p−1).

As p | πp−1 and π | 1− ζip, upon expansion we see that

p−1∏
i=1

(1−(1−ζip)p−1) ≡ 1−
p−1∑
i=1

(1−ζip)p−1 = 1−TrK/Q((1−ζp)p−1) = 1−TrK/Q
( p−1∑
i=0

(
p− 1

i

)
(−1)iζip

)
(mod p2).

Now, TrK/Q(ζ0p) = p− 1, and for 1 ≤ i ≤ p− 1, ζip has minimal polynomial
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1,

whence TrK/Q(ζip) = −1. Therefore

1− TrK/Q
( p−1∑
i=0

(
p− 1

i

)
(−1)iζip

)
= 1−

p−1∑
i=0

(
p− 1

i

)
(−1)iTrK/Q(ζip) = 1− (p− 1)−

p−1∑
i=1

(
p− 1

i

)
(−1)i+1.

For all N ∈ Z+ we have (
N

0

)
+

(
N

2

)
+ · · · =

(
N

1

)
+

(
N

3

)
+ · · · .

Therefore

N(ηp−1) ≡ 1− (p− 1)− 1 ≡ 1− p (mod p2),

hence by Equation 7.6 ∑
q|ηp−1

vq(ηp−1)(Nq− 1) ≡ −p (mod p2),

and combining Equations 7.4, 7.5 with this gives us

(ηp, π)p = (ζp, ηp−1)p = (ζ−1p )−1 = ζp

as required.
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7.3 Cubic Reciprocity Revisited

Proving Eisenstein’s reciprocity law is now fairly straightforward, however we will just stick to the cubic case

for simplicity. Originally Theorem 4.9, Eisenstein’s law of cubic reciprocity is:

Theorem. Let α, β ∈ Z[ω] be primary and relatively prime. Then(
α

β

)
3

=

(
β

α

)
3

Furthermore, if α = a+ bω with a = 3m+ 1 and b = 3n, then(
ω

α

)
3

= ω
1−a−b

3 = ω−m−n;

(
1− ω
α

)
3

= ω
a−1
3 = ωm.

Proof. For the main law, since
(−1
γ

)
3

= 1 for all γ ∈ Z coprime to π, we can assume α ≡ β ≡ 1 (mod 3).

Thus α, β ∈ U2, and so we can write

α = ηe2η
f
3u4, β = ηe

′

2 η
f ′

3 u
′
4.

for e, e′, f, f ′ ∈ Z and u4, u
′
4 ∈ U4 ⊂ U3

1 . Thus when we bilinearly expand (β, α)p, we get terms involving

one of u4, u
′
4 which evaluate to 1 as they are cubes, and terms of the form (ηx, ηy)p with x, y ≥ 2. But then

x + y ≥ 4 > 3 so by Proposition 7.5 they too evaluate to 1, whence (β, α)p = 1. Therefore Proposition 7.2

implies the result.

For the first supplementary law, we note that (ω)S(α) = OK . Thus Proposition 7.2 gives(
ω

α

)
3

= (α, ω)p = (α, η1)p.

Note that π2 = −3ω, so 3 = −(1− π)2π2, and so we can expand α as

α = 1 + 3m+ 3nω = 1− (1− π)2π2(m+ (1− π)n) ≡ 1− (m+ n)π2 + (2m+ 3n)π3 (mod π4).

Since ηi2 ≡ 1− iπ2 (mod π3), we see that α ≡ ηm+n
2 (mod π3). Next,

αη−m−n2 ≡ (1− (m+ n)π2 + (2m+ 3n)π3)(1 + (m+ n)π2) ≡ 1 + (2m+ 3n)π3 (mod π4).

As ηi3 ≡ 1− iπ3 (mod π4), we get that α = ηm+n
2 η−2m−3n3 u4 with u4 ∈ U4 (hence it is a cube). Therefore we

get (
ω

α

)
3

= (α, η1)p = (η2, η1)m+n
p (η3, η1)−2m−3np .

Proposition 7.5 gives us (η3, η1)p = 1, and

(η2, η1)p = (η2, η3)p(η3, η1)p(π, η3)p(η1, π)p = (η3, π)−1p = ω2.

Therefore (
ω

α

)
3

= ω2m+2n = ω−m−n,

which is the first supplementary law.

For the second supplementary law, note that (π)S(α) = OK . Therefore by Propositions 6.19, 7.5 we have(
1− ω
α

)
3

=

(
π

α

)
3

= (α, π)p = (η2, π)m+n
p (η3, π)−2m−3np = ω−2m−3n = ωm,

which is the second supplementary law.
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